Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling.
نویسندگان
چکیده
Stimulation of cells of the macrophage lineage is a crucial step in the sensing of yeasts by the immune system. Glycans present in both Candida albicans and Saccharomyces cerevisiae cell walls have been shown to act as ligands for different receptors leading to different stimulating pathways, some of which need receptor co-involvement. However, among these ligand-receptor couples, none has been shown to discriminate the pathogenic yeast C. albicans. We explored the role of galectin-3, which binds C. albicans beta-1,2 mannosides. These glycans are specifically and prominently expressed at the surface of C. albicans but not on S. cerevisiae. Using a mouse cell line and galectin-3-deleted cells from knockout mice, we demonstrated a specific enhancement of the cellular response to C. albicans compared with S. cerevisiae, which depended on galectin-3 expression. However, galectin-3 was not required for recognition and endocytosis of yeasts. In contrast, using PMA-induced differentiated THP-1, we observed that the presence of TLR2 was required for efficient uptake and endocytosis of both C. albicans and S. cerevisiae. TLR2 and galectin-3, which are expressed at the level of phagosomes containing C. albicans, were shown to be associated in differentiated macrophages after incubation with this sole species. These data suggest that macrophages differently sense C. albicans and S. cerevisiae through a mechanism involving TLR2 and galectin-3, which probably associate for binding of ligands expressing beta-1,2 mannosides specific to the C. albicans cell wall surface.
منابع مشابه
Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans.
Lectins play a critical role in host protection against infection. The galectin family of lectins recognizes saccharide ligands on a variety of microbial pathogens, including viruses, bacteria, and parasites. Galectin-3, a galectin expressed by macrophages, dendritic cells, and epithelial cells, binds bacterial and parasitic pathogens including Leishmania major, Trypanosoma cruzi, and Neisseria...
متن کاملGreen synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملDifferential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae.
Toll-like receptors (TLR) are crucial for an efficient antifungal defense. We investigated the differential recognition of blastoconidia and hyphae of Candida albicans by TLRs. In contrast to Candida blastoconidia, which stimulated large amounts of gamma interferon (IFN-gamma), the tissue-invasive Candida hyphae did not stimulate any IFN-gamma by human peripheral blood mononuclear cells (PBMC) ...
متن کاملRecognition of yeast by murine macrophages requires mannan but not glucan.
The first barrier against infection by Candida albicans involves fungal recognition and destruction by phagocytic cells of the innate immune system. It is well established that interactions between different phagocyte receptors and components of the fungal cell wall trigger phagocytosis and subsequent immune responses, but the fungal ligands mediating the initial stage of recognition have not b...
متن کاملToll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae.
Phagocytic responses are critical for effective host defense against opportunistic fungal pathogens. Macrophages sample the phagosomal content and orchestrate the innate immune response. Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA and is activated by fungal DNA. Here we demonstrate that specific triggering of TLR9 recruitment to the macrophage phagosomal membrane is a conserved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 177 7 شماره
صفحات -
تاریخ انتشار 2006